

Catalytic Biomass Pyrolysis Technology Development for Advanced Biofuels Production

Workshop on Lignocellulosic Biofuels Using Thermochemical Conversion

Auburn University

June 15, 2012

RTI International is a trade name of Research Triangle Institute. **WWW.rti.org**

Overview

- Overview of RTI International
- **Background and Technology Overview**
- R&D Status Update
	- Catalyst Development
		- Automated Microreactor tests
		- Catalyst Scale-up
	- Proof-of-Concept
		- Bio-crude production
		- Sample analyses
	- Bench-scale system design
		- Detailed Engineering
		- RTI Site Planning
	- Techno-economic Analysis
	- **Summary**

What is RTI International

RTI is an independent, nonprofit institut**e** that provides research, development, and technical services to government and commercial clients worldwide. Our mission is to improve the human condition by turning knowledge into practice.

Corporate Offices

RTP, NC Washington, DC Rockville, MD Atlanta, GA Chicago, IL Waltham, MA San Francisco, CA Ann Arbor, MI *Headquartered in North Carolina, with offices around the world*

Our People

- 2,300 in North Carolina
- 500 in U.S. regional offices
- 1,000 supporting international development projects
- More than 130 disciplines
	- **Statistics**
	- Survey methodology
	- Public health
	- **Epidemiology**
	- **Economics**
	- Chemistry and life sciences
	- **Engineering**

FY2011 Revenue – \$777M

Dept of Health and Human Services

Commercial Sector

Other Federal

US Agency for International Development

Other Nonfederal

Dept of Education

Dept of Defense EPA

Research Focus

Health

- Drug discovery and development
- Education and training
- Surveys and statistics
- International development
- Economic and social policy
- Energy and the environment
- Advanced technology
- Laboratory and chemistry services

- Discovery and Analytical **Sciences**
- Engineering and Technology
- Global Health
- **-** International Development
- Social, Statistical, and Environmental Sciences
- RTI Health Solutions

RTI's Center for Energy Technology (CET)

RTI's Johnson Science and Engineering Building Home of the Center for Energy Technology

- CET develops **advanced energy technologies** to address some of the world's great energy challenges
- Leading-edge expertise in:
	- Advanced materials development
		- Catalysts
		- Membranes
		- \cdot CO₂ solvents
	- Process engineering & design
	- Scale-up & field testing
- Industries served by CET:
	- Power
	- Fuels & Chemicals
	- Gas Processing
	- Transportation
	- Cement

Translational Research

Core Capabilities

Catalysts, Sorbents, Solvents & Membranes

- Synthesis and development
- Characterization and testing
- Production scale-up

Lab-scale and Bench-scale Testing

- Micro-reactors (gas-solid reactions)
- Fixed- and fluidized-bed, bench-scale reactors

Process Simulation, Engineering & Design

- Process modeling
- Fluid-bed/Transport reactor design
- Process scale-up and integration
- Techno-economic assessments

Process Scale-up & Prototype Demonstration

Pilot and demonstration units

Background and Technology Overview

Catalytic Biomass Pyrolysis Technology Overview

Goal: Develop a process to convert lignocellulosic (non-food) biomass into a bio-crude oil that can replace petroleum crude in U.S. refineries

Technology: Catalytic pyrolysis of biomass into bio-crude

• Multi-functional catalysts maximize carbon efficiency, remove oxygen, and control bio-crude properties

Resulting bio-crude

- Is highly energy efficient (maximize fuel yield)
- Can be integrated into existing refineries
- Requires less hydrogen to upgrade than bio-oil from conventional fast pyrolysis

Commercial Concept

- Stand-alone integrated catalytic pyrolysis with hydroprocessing
- Distributed network of catalytic pyrolysis facilities process biomass
- Bio-crude sent to existing refineries for upgrading
- Refined fuel can be stored, pumped, and used exactly as petroleumbased fuels are today

Catalytic Biomass Pyrolysis State-of-Technology

Current State-of-the-Art

RTI's Translational Technology

Primary Technical Objectives

- Maximize biofuel output
- Minimize external H_2 consumption
- Reduce process complexity
- Maximize heat integration

Technical Barriers to Overcome

- Utilize H² produced *in-situ*
- Reduce oxygen content of biocrude
- Improve bio-crude thermal stability to maximize energy recovery
- Minimize coke formation

$$
\bullet \ \mathbf{C}_{\mathrm{B}} \leq \mathbf{C}_{2}
$$

- $C_A \ll C_1 + C_3$
- $C_c \approx C_A$

Technology Development Approach

Proposed Technology: A novel process that uses multi-functional catalysts to control biomass pyrolysis chemistry to produce a cost-effective refinery-compatible hydrocarbon intermediate

- **FICULE 5 In the Chandle Scale-up from the beginning**
- Cover entire biomass to biofuels value chain
- Commitment and resources to commercialize new biofuels technologies

Technology Development Timeline

2010 – 2012

DOE/ARPA-E

Catalytic Bio-crude Production in a Novel, Short-Contact Time **Reactor**

DE-AR0000021 (\$4MM)

Catalyst Development

Catalyst Development

- Screened catalyst formulations for deoxygenation activity in multiple reactor systems
- Automated Medium Throughput Microreactor (MTP)
	- Programmed reaction sequence for unattended operation
	- Rapid screening to evaluate deoxygenation activity with model compounds
	- Quantitative real-time product analysis
	- Measure regeneration products for coke yield

• Bench-top fluidized bed reactor for catalytic biomass pyrolysis

- Correlate deoxygenation activity with bio-crude oxygen content
- On-line gas analysis
- Liquid and solid product collection and analysis
- > 95% mass closure for bio-crude yield and energy recovery
- Over 100+ trials of catalytic fast pyrolysis in the bench-top fluidized bed reactor

Medium Throughput Catalyst Microreactor System

- Fully automated to increase catalyst testing throughput
- Real-time, quantitative product sampling
- Develop reaction mechanisms and kinetics for model compounds

Supported catalyst development

- Evaluating long-term activity of RTI-A9
- Screening formulations
- Testing effect of promoters

MTP Reactor Data Analysis

Guaiacol flow rate adjusted for 90% or less conversion to evaluate time-dependent deoxygenation activity

Real-time, online MS analysis

- Products correlated with specific ions (m/z)
- Products quantified by calibration and integration under curve
- Provides time resolved product composition
- Measure both reaction and regeneration

RTI-A9 Long-term Activity

Catalyst Development Summary

- Key material properties (independent of preparation method)
- MTP will be used to test catalyst formulations to validating performance of material from scale-up procedures
- RTI-A9 stable for 100 cycles
- Explore using MTP results to develop deoxygenation mechanisms and Arrhenius rates to predict catalyst performance

Transalkylation (1) and Hydrodeoxygenation (2) are possible reaction paths for deoxygenation of guaiacol over RTI-A9 and its derivatives

Catalytic Biomass Pyrolysis Proof-of-Concept

1"-diameter Fluid Bed Reactor System

- Catalytic pyrolysis studies in a bench-top fluidized bed reactor
- Rapid catalyst screening
- Biomass injected directly into fluidized catalyst bed
- Mass closures > 90%
- On-line gas analysis
- Liquid and solid product collection and analysis

Bio-crude Properties

White oak bio-crude produced with RTI-A9 catalyst

White oak fast pyrolysis oil **Catalytic Effect on Bio-crude Composition**

Quantified Content (Area-%) of Identified Compound Classes in Pyrolysis Oil.

Bench-scale Catalytic Biomass Pyrolysis System

1 TPD Catalytic Biomass Pyrolysis Unit Overview

Objectives:

- Demonstrate RTI's catalytic biomass pyrolysis process at pilot-scale with a biomass feed rate of 100 lb/hr
	- Bio-crude with less than 20 wt% oxygen
	- At least 50% energy recovery
	- Mass closure at least 90%
- Understand the effect of operating parameters on product yields and quality
	- Pyrolysis temperature (350-500 ºC)
	- Residence time (0.5-1.0 s)
	- Regenerator temperature (500-700 ºC)
	- Catalyst circulation rate
	- Type of biomass

Design based on single-loop transport reactor system

- Catalyst undergoes continuous reaction and regeneration
- System can be operated autothermally with heat of regeneration (and char combustion) carried over by the catalyst to the reaction zone

RTI International

1 TPD Catalytic Biomass Pyrolysis System PFD

Design Basis and System Overview

Process Sub-systems

- Biomass Feeder
	- Bulk bag discharge
	- Double lock hopper
- Reactor System
	- Transport reactor
	- Make-up catalyst storage
	- Quench system for pyrolysis products recovery
		- Spray column
		- Separation vessel
		- Heat exchanger
- Product Collection and Storage
- Regenerator Off-gas Cooler
- Thermal Oxidizer and Vent

Biomass Feed System Design – T.R. Miles

Feedstock Preparation

- Biomass received in super sacks (0.5" top size, 10% moisture, 15-30 lb/ft³ bulk density)
- Bulk bag discharger for loading the feeder hopper
- **Biomass Feeder**
	- Double lock hopper design to purge and pressurize feed
	- Design feed rate: 100 lb/hr based on volumetric flow rate
	- Bottom bin capacity above level switch: 1.8 ft 3
	- Cycle time every 15-30 minutes
- Cooling water jacket surrounding the feeder screw
- P.O. for feed system has been placed
- Delivery August 2012

Reactor

- Biomass and catalyst are fluidized with N_2 in the mixing zone
- Biomass and regenerated catalyst fed just above gas distributor
- Fluidizing gas velocity is expected to be 1 ft/s
- Reactor cyclone separates coked catalyst, char, ash and unconverted biomass from pyrolysis vapors and permanent gases

Regenerator

- Char and coke oxidize in the regenerator
- Water or diesel can be added to the regenerator to control the bed temperature
- Air velocity is maintained at 1.4 ft/s in the bottom zone and is lowered to 0.8 ft/s in the top section
- Ash and catalyst fines are expected to entrain out of the regenerator at the operating gas velocity of 0.8 ft/s
- Make-up catalyst can be added if solids level in the regenerator drops below a certain level

Pressure Profile and Control

$$
\Delta P_{\text{Regenerator}} = \Delta P_{\text{Standardpipe}} + \Delta P_{\text{Mixing}Zone} + \Delta P_{\text{Riser}} + \Delta P_{\text{Cyclone}^*} + \Delta P_{\text{loopséal}}
$$

- Balancing pressure throughout the transport loop is critical to achieving desired catalyst circulation
- Reactor loop seal to adjust against pressure fluctuations and not to effect any pressure change
- Reactor loop controlled using a pressure control valve downstream of the quench system
- Regenerator loop controlled using a pressure difference control valve relative to the reactor side pressure

- Pyrolysis vapors and gas contacted with a spray of quench water
- Bio-crude vapors and water cooled in a heat exchanger
- Bio-crude liquid and permanent gases separated
- Demister pad to remove any entrained aerosols
- Interface level transmitters control bio-crude collection
- Bio-crude and water drained to a storage/settling tank
- Organic and aqueous phases separate and collected in drums

- Total liquid products transferred to vessels with level transmitters
- Each vessel consists of a on-off switch in the feed line and a manual drain valve
- Products will be collected in storage vessels, allowed to phase separate, and transferred to storage area
- If vessel is not drained in time, a "high level" trip will close the on-off valve (and stop product addition)

Regenerator Off-gas Cooler

Site Preparation - RTI Satellite Field

Energy Technology Research Facility

Energy Technology Research Facility

Techno-economic Analysis

2000 tpd Preliminary Commercial Design Concept

Wood Yard and Drying

- Logs and chips storage
- Wood chipping
- Wood chips drying
- Dry chips storage

Biomass to Bio-crude

- Catalytic pyrolysis reactor
- Coolers and quench column
- Electrostatic precipitator
- Bio-crude/water separation

Bio-crude Upgrading

- **Bio-crude pump and heater**
- **Hydrotreater**
- \blacksquare Multi-stage H₂ compressor
- Gasoline/water separation

Hydrogen Production

- Steam reformer
- Shift reactor
- Amine scrubber
- Gas furnace

Financial Assumptions

- \blacksquare Debt Rate 7.5%
- Debt Term 20 years
- Percent Debt 60%
- Availability
	- $-$ Year 1 80%
	- $-$ Year 2 85%
	- $-$ Year $3 90\%$
	- $-$ Year 4 95%

Capital Cost Summary

Equipment Cost By Area

Total Cost By Category

RTI International

Process Economics Assumptions

Annualized Production Cost Distribution ■Biomass Debt Payment ■ Annualized Capital Cost **OPEX** ■ Make-up Catalyst Personnel **Electricity** ■ Ash Disposal ■ Waste Water Natural Gas ■ Cooling Water ■ Make-up Water Demin Water 4.6% 2.4% 3.0% 11.7% 13.6% 6.7% 8.6% 44.3% 1.3% 0.2%

Base Case

- Feedstock: \$65/dry-ton
- Gasoline Price: \$3.13/gal
- Govt. Subsidy: \$1.01/gal
- Natural Gas: \$4.50/MMBtu
- Electricity: \$0.06/kWh
- $-$ No CO₂ credit

Sensitivity Analysis

RTI International

Summary of Technology Status

- Catalyst development included model compound screening and bench-top $($ \sim 1 g/hr) biomass conversion
	- Suitable catalyst identified for scale-up
	- Working with catalyst partners for bench-scale batches
- Catalytic biomass pyrolysis in a 1"-dia fluidized bed reactor
	- **Organic and aqueous phases**
	- 20 wt% oxygen content
	- 42% energy recovery
- Laboratory data provides the basis for a 1 TPD bench-scale unit
	- **HMB and process design complete**
	- Detailed engineering completed June 1, 2012
	- Fabrication
	- **Installation and commissioning late 2012**
- Catalyst Scale-up
- **Preliminary Techno-Economic Analysis**
- Bio-crude Upgrading

Critical Validation Matrices

- Pilot plant representative of a commercial engineering design
- Pilot plant operated for long-enough duration to get design data for a commercial plant and operational experience
- Multiple biomass feedstocks tested
- Catalyst scaled-up and physical/chemical properties confirmed
- Long-term durability of the catalyst demonstrated
- Oil yields and oil quality validated
- Final product certified as a "drop-in" fuel
- Production of other value-added products explored (BTX, ethylene, propylene, etc.)

Acknowledgements

Archer Daniels Midland

- **Todd Werpy**
- Tom Binder
- Ahmad Hilaly
- Gustavo Dassori

Phillips 66 (ConocoPhillips)

- Kristi Fjare
- Ronald E. Brown
- **Mark Hughes**
- Liang Zhang

Haldor Topsoe

- Kim Knudsen
- Rasmus Egeberg
- Henrik Rasmussen

HALDOR TOPSOE H CATALYSING YOUR BUSINESS

AVIZ **UD-CHEI SILLE CREATING PERFORMANCE TECHNOLOGY**

ADM

pinnass

RTI Contributors

- David C. Dayton (PI)
- John Carpenter
- Matt von Holle
- Maruthi Pavani
- Pradeepkumar Sharma
- Devaughn Body
- Jonathon Peters
- **Gary Howe**
- Atish Kataria
- Steve Mazzarelli

Center for Energy Technology

Advanced Gasification Program

Maximizing the potential of gasification for power and chemical applications

Increased thermal efficiency and lower capital cost for IGCC and syngas-to-chemicals applications

- Syngas contaminant removal at high temperatures (> 200 C)
- 50 MW_e demonstration at Tampa Electric's Polk Power Station IGCC with carbon capture and sequestration
- High Temperature

Multi-Contaminant Syngas Cleaning

Co-Production Processes

- Desulfurization Transport reactor based syngas desulfurization
	- Fixed-bed catalysts and sorbents for high temperature removal of contaminants such as Hg, NH₃, Cl, arsenic, cadmium, selenium, and $CO₂$

Convert low-rank carbonaceous feedstocks to valuable products

 Developing process technology to convert feedstocks to combinations of substitute natural gas, hydrogen, electricity, and $CO₂$

Center for Energy Technology

Biomass and Biofuels Program

U.S. Energy Independence and Security Act of 2007 establishes new renewable fuel targets

- Produce 36 billion gpy by 2022 ; 21 billion must be cellulosic
- Biofuels must deliver a 20% lifecycle greenhouse gas reduction

Technology

Catalytic Biomass Pyrolysis

Biomass Hydropyrolysis

Biomass Syngas Cleanup & Fuel **Synthesis**

Biomass Syngas Contaminant Effects

Optimize biomass pyrolysis chemistry and catalysis

 Developing a novel biomass pyrolysis process to produce an intermediate that is compatible with existing transportation fuel production and distribution

National Advanced Biofuels Consortium (Lead: NREL)

 Developing novel process for catalytic conversion of biomass in the presence of high pressure hydrogen

Reduce costs to remove tars, NH³ , and sulfur from biomass syngas

 Syngas clean-up technology can be used to produce cost-competitive biofuels

Determine effects that syngas contaminants have on catalysts

 Evaluating the effects coal/biomass-derived syngas contaminants have on Fischer-Tropsch and water gas shift catalysts

j.

www.co2management.org/proceedings/Masaki_Iijima.pdf