Challenges and Opportunities of Biomass Pyrolysis to Produce Second Generation Bio-fuels and Chemicals

Manuel Garcia-Perez

Washington State University

Workshop on Lignocellulosic Bio-fuels Using Thermo-chemical Conversion

June 13, 2012 , Auburn University

THE PAST AND THE PRESENT

Milestones of Distilled Products from Pyrolysis

- 1658 The acid called pyroligneous was identified as similar to the acid contained in vinager (**acetic acid**) (**SCIENCE**)
- 1792 England commercialized luminating gas from wood (MARKET)
- 1819 The first pyrolysis oven that transferred heat through its metal walls was designed by Reichenbach (TECHNOLOGY)
- 1835 **Methyl alcohol**, an isolated product of crude wood-spirit, was discovered by Dumas and Peligot (SCIENCE)
- 1856 An increase in demand for **methyl alcohol** was a result of Sr. William H. Perkin's patent on aniline purple (first synthetic organic dye) (MARKET)
- 1870 Early investigations done by Lowitz resulted in a new chemically **pure acetic acid (SCIENCE)**
- 1850 The wood distillation industry began to expand (PROGRESS) (SCIENCE+TECHNOLOGY+ MARKET)

Carbonization (Slow Pyrolysis)

Conditions	Liquid	Char	Gas
Slow heating rates, large particles, large residence time of vapors	30 - 45 %	25-35 %	25-35 %

Wood Distillation Industry (Production of methanol, Acetone and Acetic Acid)

Wood Distillation Industry (Production of methanol and Acetone)

1920 - The rise of the petroleum industry caused a decline in the wood distillation (MARKET)

1920-60 Bio-char was produced in small ovens without liquid recovery. **MARKET: metallurgical applications and for cooking** (backyard home barbecues). Highly pollutant kilns without liquid product recovery.

¹ Emrich W: Handbook of Charcoal Making. The Traditional and Industrial Methods. Series Solar Energy R & D in the European Communities. ² http://www.fao.org/docrep/x5328e/x5328e0k.jpg

Milestones of Distilled Products from Pyrolysis

- 1960- Understanding the fundamentals of biomass pyrolysis reactions (SCIENCE)
- 1970 Oil Crisis (MARKET)
- 1980 The development of fast pyrolysis (TECHNOLOGY)
- 1980s Several fast Pyrolysis Technologies reach commercial or near commercial status. Focus on bio-oil combustion studies (TECHNOLOGY)
- 1989 Ensyn starts to commercialize food flavors (MARKET)
- 1990 Bio-oil upgrading strategies (bio-oil micro-emulsions, hot vapor filtration, use of additives) began to be developed (**SCIENCE**)
- 1990 Development of **new bio-oil derived products to replace products from the petroleum industry** (Bio-lime, Slow release fertilizers, Wood Preservatives, Glues, Sealing materials, hydrogen, phenol formaldehyde resins) (**SCIENCE** + **TECHNOLOGY**)

Milestones of Distilled Products from Pyrolysis

- 2000 Pronounced increase in oil prices, global warming and first signs indicating the beginning of a steady decline of Petroleum Industry (MARKET + SOCIAL PROBLEMS)
- 2000 New bio-oil based refinery concepts targeting the Production of Green Gasoline and Green Diesel began to be developed (TECHNOLOGY)

Bio-oil Refineries¹:

Demonstration Plant in Tesoro Corp. Refinery in Kapolei, Hawaii, expected to start in 2014 (34 mass %² of Biomass converted into Hydrocarbon)

¹ Jones SB, Holladay JE, Valkenburg C, Stevens DJ, Walton C, Kinchin C, Elliott DC, Czernik S: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case. US Department of Energy, February 2009, **PNNL**-18284 Rev. 1. DE-AC05-76RL01830

² Elliott D, Advancement of Bio-oil utilization for Refining Feedstock. Presented at the Washington Bio-energy Research Symposium Nov. 8, 2010

Pyrolysis Scheme to Produce Bio-Pyrolysis Scheme to Produce Biochar and Heat char and bio-oil Gases Heat Condensers Air Combustion Combustion Pyrolysis Gases Pyrolysis Biomass Biomass vapors Chamber vapors Bio-oil PYROLYSIS **PYROLYSIS** REACTORS REACTORS Char Char

Concept 1: Slow Pyrolysis to produce heat and bio-char

Conditions	Liquid	Char	Gas
Slow heating rates, large particles, large residence time of vapors	30 - 45 %	25-35 %	25-35 %

Despite the growing interest in producing bio-char and heat, the lack of available information on clean designs hinders those interested in developing this industry. The inadequate flow of information for potential users forces the design of pyrolysis units to remain an art.

Negative environmental impact of Pyrolysis technologies without heat recovery!

Garcia-Perez M, Lewis T: Feasibility Methods for Producing bio-char and advanced bio-fuels in the state of Washington. Report to the Washington State Department of Ecology, August 2010

SLOW PYROLSYSIS is well suited for producing **bio-char** and heat/electricity from the Agricultural Wastes with high contents of alkalines.

Main Hurdles: The deployment of environmentally friendly slow pyrolysis technologies able to produce heat and bio-char

Higher value products from bio-char have to be developed

Fast Pyrolysis

Fast pyrolysis is a process in which very small biomass particles (less than 2 mm diameter) are heated at 450 – 600 °C in the absence of *air/oxygen to* produce high bio-oil yield (60-75 mass%).

Conditions	Liquid	Char	Gas
High heating rates, small particles, short residence time of vapors	60-75 %	12-20 %	13-20 %

Model of Biomass Economy Based on Pyrolysis and Rural Refineries

Potential Production (11.4 % of Current WA Oil Consumption)

- Petroleum Refineries
 - Tacoma (Oil US): 4,600 t crude oil/day
- 2 Anacortes (Tesoro): 14,400 t crude oil/day
- 3 Anacortes (Shell): 19,000 t crude oil/day
- 4 Ferndale (Conoco): 14,000 t crude oil/day
- 5 Cherry Point (BP): 30,000 t crude oil/day

- 300 t crude bio-oil/day
 - 1,200 t crude bio-oil/day
- 2,400 t crude bio-oil/day

Potential Production of Stabilized Bio-oil: 6,140 t/day (46,120 barrels/day) Potential per-capita of Stabilized Bio-oil: 6.9 barrels per day/1000 people Current WA per-capita consumption: 60.4 barrels per day/1000 people World per capita consumption: 31.7 barrels per day/ 1000 people

Assumptions: (1) Yield of crude bio-oil: 60 mass % of the biomass processed (2) Yield of stabilized bio-oils: 50 mass % of the crude bio-oil obtained

Main Hurdle: Poor Bio-oil Quality (need of selective pyrolysis reactors) and lack of Rural Refineries to convert crude bio-oil into an stabilized oil compatible with existing petroleum refineries and high value products from bio-oils.

Rural Bio-oil Refinery (Looks like a modified Xylitol or Sorbitol Plant)

Jones SB, Holladay JE, Valkenburg C, Stevens DJ, Walton C, Kinchin C, Elliott DC, Czernik S: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case. US Department of Energy, February 2009, PNNL-18284 Rev. 1. DE-AC05-76RL01830

AREAS OF RESEARCH

Fundamentals of Biomass Thermo-chemical Reactions to develop more selective pyrolysis reactors (produce bio-oil of better quality)

Primary thermochemical reactions of cellulose, lignin and hemicellulose

Cellulose-lignin, cellulose - alkalines, lignin – alkalines interactions during primary thermochemical reactions.

Homogeneous and Heterogeneous secondary reactions of cellulose, lignin and hemicellulose.

Cellulose - lignin interactions during homogeneous and heterogeneous secondary reactions.

Cellulose Primary Reactions Vacuum Mesh Reactor

In Collaboration with the University of Twente (Z. Wang, R. Westerhof and S. Kersten)

No Product of Fragmentation Reactions is observed

EFFECT OF PYROLYSIS TEMPERATURE

Families:

- A: Hydroxy-acetaldehyde, methanol, formic acid
- B: Water, Acetic Acid, Acetol
- C: Mono-phenols and furans
- D: Anhydrosugars (Levoglucosan)
- E: Lignin Oligomers
- F: Cross Linked Sugars???

Garcia-Perez M, Wang S, Shen J, Rhodes M, Lee Woo L, Li C-Z: Effects of Temperature on the Formation of Lignin-Derived Oligomers during the Fast Pyrolysis of Malee Woody Biomass. Energy & Fuels 2008, 22, 2022-2032

EFFECT OF VAPORS RESIDENCE TIME INSIDE THE PYROLYSIS REACTOR (University of Twente)

Roel JM Westerhof: Refining Fast Pyrolysis of Biomass. PhD Thesis University of Twente 2011

EFFECT OF PARTICLE SIZE (C-Z Li, Monash University)

Shen J, Wang X-S, Garcia-Perez M, Mourant D, Rhodes MJ, Li C-Z: Effects of particle size on the fast pyrolysis of oil malee woody biomass. Fuel 88 (2009) 1810-1817

EFFECT OF PARTICLE SIZE (University of Twente)

A fluidized bed reactor can result in bio-oil yields comparable to those of slow pyrolysis reactors if larger particle size are used.

Roel JM Westerhof: Refining Fast Pyrolysis of Biomass. PhD Thesis University of Twente 2011

EFFECT OF PARTICLE SIZE (University of Twente)

SEM Pictures of 1 mm beech wood particles

SEM Pictures of beech wood particles smaller than 80 micron

Roel JM Westerhof: Refining Fast Pyrolysis of Biomass. PhD Thesis University of Twente 2011

Catalytic Effect of Alkalines

Use of Acid additives (H₂SO₄)

Product Yields (mass %) from the Pyrolysis of Various Cellulosic Substrates (Vacuum Pyrolysis) (Shafizadeh and Stevenson 1982)

Substrate	Washing	Ash	Char	Tar	Levoglucosan
CF-11	Acid		5	68	36
CF-11 + H ₂ SO ₄	Acid		7	63	35_
Holocellulose	Acid	0.05	8	66	26
Holocellulose + H_2SO_4	Acid	0.05	9	57	23
Wood	Acid	<0.02	16	51	9
Wood + H_2SO_4	Acid	<0.02	17	50	19

"Under the conditions employed in these experiments, the addition of small amounts of acid appeared to be most effective when lignin was present. *The mechanism of this phenomenon, however, is not clear* and cannot be simply attributed to cleavage of the lignin-carbohydrate bonds" (Shafizadeh and Stevenson 1982).

Shafizadeh F, Stevenson TT: Saccharification of Douglas-Fir Wood by a Combination of Prehydrolysis and Pyrolysis. Journal of Applied Polymer Science, Vol. 27, 4577-4585 (1982)

Researchers from Iowa State University discovered that *there is a* correlation between the amount of minerals in the biomass and the amount of Acid required to achieve optimal levoglucosan yields.

The acids *passivate the catalytic effect of alkalines* and contribute in this way to increase the production of levoglucosan.

Brown RC: Prospects for a Thermolytic Sugar Platform. TC Biomass Conference. Chicago, IL, September 27-30, 2011

CELLULOSE - LIGNIN INTERACTIONS

Fast Pyrolysis Reactors

The sand used to achieve high heating rates contaminates the bio-char and is the source of several technological poblems

Vanderbosch RH, Prins W: Fast pyrolysis technology development . Biofuels, Bioproducts & Biorefining. 2010, p. 178-208

Fast Pyrolysis Reactors

Current technologies use high volumes of carrier gas and sand as heat carriers. These reactors have very poor selectivity towards the production of precursors of transportation fuels.

Are the designs that have been scaled up reliable enough or will they be replaced by new ones when bio-oil refineries are deployed?

Intermediate Pyrolysis Reactors

Black is Green Pty Ltd http//www.biochar.com.au/about.html Amaron rotary drum reactor (Coates Engineering) <u>http://www.coatesengineering.</u>

<u>com</u>

Comprehensive Methodology to Design Pyrolysis Reactors? Could we increase bio-oil yields?

Intermediate Pyrolysis Reactors

(<u>http://www.internationaltechcorp.o</u> <u>rg/IT-info.htm</u>) eGenesis CR-2 pyrolysis unit (<u>http://www.egenindustries.com</u>)

Novel Concepts for Pyrolysis Units studied at WSU

- (1) Use of Intermediate Pyrolysis reactors without sand
- (2) Two Step Pyrolysis to reduce grinding energy
- (3) Two Step Condensation Systems to Separate C1-C4 molecules and water from bio-oil

Collaboration with Twente University (Netherlands) and Curtin University (Australia)

Performance of Auger Pyrolysis Reactor

Effect of Pyrolysis Temperature

Use of sulfuric acid as additive to passivate alkalines

Auger Pyrolysis Reactor

Fluidized Bed Pyrolysis Reactor

Washington State University

Curtin University (Australia)

Effect of Sulfuric Acid Concentration

Effect of Sulfuric Acid Concentration

Yield of Water and Viscosity

In both reactors the *water yield increased linearly* with the concentration of sulfuric acid indicating *acceleration of dehydratation reactions*. Bio-oil viscosity decreases as sulfuric acid concentration increases.

Effect of Sulfuric Acid Concentration

Yields of Light Molecules: GC/MS

The yield of *acetol and acetic acid, from the fragmentation of cellulose and hemicelluloses decreased as sulfuric acid concentration increased*. The acetic acid is derived from the acetate group attached to the hemicellulose structure and from the fragmentation of cellulose.

Effect of Sulfuric Acid Concentration

Yields of Mono-Lignols: GC/MS

The production of vanillin, phenol - 2 - methoxy - 4 - (1 -propenyl)and eugeol was drastically reduced as the concentration of sulfuric acid increased. These compounds have methoxy groups in their structures which make them very reactive.

Effect of Sulfuric Acid Concentration

Yields of Lignin Oligomers

The oils produced in the auger reactor showed higher yields of water insoluble- CH_2Cl_2 soluble fraction (low molecular weight oligomers) but lower yields of the water- CH_2Cl_2 insoluble-methanol soluble fraction (high molecular weight oligomers). *The addition of sulfuric acid reduces the yield of all lignin oligomeric fractions for both the auger and the fluidized bed pyrolysis reactor*.

Effect of Sulfuric Acid Concentration Analysis of Lignin Oligomers: Py-GC/MS

The use of sulfuric acid **significantly reduces the yield of phenolic compounds with methoxy group**. The methoxy groups are known to be electron donors.

Effect of Sulfuric Acid Concentration

Analysis of Lignin Oligomers: ¹³C Solid State NMR

Peak assignmen	t
----------------	---

Chemical shift /	Functional groups
ppm	
0-50	Aliphatic carbons
50-60	Methoxyl carbons
60-80	Aliphatic C-O carbons
100-140	Aromatic carbons
140-165	Oxygenated aromatic carbons
165-230	Carbonyl carbons

dramatic decrease the Α in methoxy content of groups confirms the Py-GC/MS findings clearly suggest and that the presence of this functional group activate the ring and accelerate the formation of polyaromatic structures in the bio-char produced.

Evaluation of Condensation Systems

90

90

Westerhof RM, Brilmant DW, Garcia-Perez M, Wang Z, Oudenhoven SRG, van Swaaij WPM, Kersten SRA: Fractional Consensation of Biomass Pyrolysis Vapors. Energy Fuels, 2011, 25 (4), 1817-1829

Chemicals that can be obtained from bio-oils

Chemical	Note	Reference
Acetic Acid	World Production: 7 million tons/year, potential price: 0.6 \$/kg	Patel et al. 2006, Rasrendra et al. 2010
Adhesives	Phenol substitute for the production of adhesives for the production of Wood panels	Czernik and Bridgwater 2004, Effendi et
	(plywood, MDF, particle board and OSB).	al. 2008, Mohan et al. 2006
Aldehydes and ketones	Separation of aldehydes and ketones have been investigated by bio-coup	Vitasari et al. 2010,
Alkylaromatics	Conversion using zeolites	Resasco et al 2010
Antioxidants	Antioxidant properties of lignin derived compounds	Garcia-Perez et al 2010
Asphalt paving substitution	Production of asphalt emulsions	Mullaney et al. 2002
Bio-carbon electrodes	Production of electrodes, calcinations at 1000 °C and graphitization at 2700 °C.	Cautinho et al. 2000
Coal dust suppression	The current product used to coat coal piles is a plasticizer that is bio-degradable and does not	Mullaney et al 2002
	contaminate ground water	
Fertilizer	Amides, imines and mannich reaction products, are produced from the reaction of bio-oil	Radlein et al. 2005
	functional groups (carbonyl, carboxyl, hydroxyl, phenolic and methoxyl) with ammonia, urea,	
	and other amino compounds and can function as slow release organic fertilizers	
Food additives	Commercialized by Red Arrow Products and RTI. A new method for the separation of	Mohan et al. 2006, Czernik and
	glycoaldehyde from pyrolysis oil via physical extraction has been reported by researchers	Bridgwater 2004, Vitasari et al 2010
	from the Eindhoven University of Technology	
Glucose	Can be obtained by hydrolyzing hydrolyzable sugars (levoglucosan, cellobiosan)	Lian et al. 2010, Patel et al. 2006
5-hydroxymethyl furfural	Attractive building block for further derivatization	Patel et al. 2006
(HMF)		
Levoglucosan	By using demineralized cellulose, high yields of levoglucosan (up to 46 wt. %) and	Radlein et al (1999), Czernik and
	levoglucosenone (up to 24 wt. %) can be generated	Bridgwater 2004
Methanol	Can be produced from the distillation of pyrolighneous water	Emrich 1985
Pesticides	Significant activity against two bacteria and and the Colorado potato beetle were shown	Bedmutha et al. 2011, Booker et al.
	using bio-oil derived from dried coffee grounds	2010
Impermiabilizer	Black residue of tar distillation commercialized to impermiabilize ships.	Emrich 1985
Road de-icer	Calcium salts of carboxylic acids	Czernik and Bridgwater 2004
Sufactants	More than 10 commercial grades are used for ore flotation	Emrich 1985
Wood preservatives	Bio-oils can act as insecticides and fungicides due to some of the terpenoid and phenolic	Czernik and Bridgwater 2004, Mohan et
	compounds present	al. 2008

Bio-Methane Production from C1-C4 Pyrolytic Products

Conversion of acetic acid contained in the aqueous phase collected in the second condenser into lipids

Aqueous phase rich in C1-C4 compounds and acetate fermentation (C. Curvatus)

Conversion of Pyrolytic Sugars into Ethanol or Lipids

Production of Ethanol

Cryptococcus curvatus and Rhodotorula glutinis for Lipid Fermentation

Cryptococcus curvatus could produce up to 68 % lipid mass/cell mass in 122 hr and 16 g lipid / 100 g glucose conversion in144 hr.

Rhodotorula glutinis could produce up to 46 % lipid mass/cell mass and 8.9 g lipid / 100 g glucose conversion in144 hr.

Direct Conversion of Levoglucosan into Lipids

Oleaginous Yeasts Strain Selection for Levoglucosan Fermentation

Strains	Growth
Lipomyces starkeyi ATCC12659	-
Cryptococcus curvatus ATCC20509	+
Yarrowia lipolytica ATCC20460	-
Rhodosporidium toruloides ATCC10788	++
Rhodotorula glutinis ATCC204091	++

Levoglucosan and glucose fermentation with oleaginous yeast *R.* glutinis

TO DEVELOP NEW PRODUCTS FROM BIO-CHARS

Bio-char —

Modifications of biochar surface chemistry _ and the development of new Products Advanced Soil Amendments for carbon sequestration

Construction materials

Bio-Char for Environmental Applications

- Carboxylic groups form rapidly, then Lactone Groups
- Oxidation Slows after first 10-20 minutes
- CEC increases strongly with oxidation

BIO-OIL REFINERIES

Two Step Hydrotreatment (PNNL)

1.- High hydrogen consumption making the process cost-prohibitive to get 3 \$/gallon of bio-fuel

2.- No high value by-products are produced to make the plant economics viable

3.- The **fuel produced** from the hydrotreatment of bio-oil **is rich in aromatics and naphthalene** but has low content of paraffins and isoparaffins. This limits its application as a jet fuel.

BIO-OIL REFINERIES

Strategy for up-grading biooil (Brown 2010).

Hybrid Refining Technologies

Old wood distillation industry's bio-refinery concept (Klar and Rule 1925).

Simplified scheme which uses bio-oil/biochar slurries to produce Fischer-Tropsch (FT) syngas (Henrich et al. 2009).

BIO-OIL REFINERIES

Bio-refinery Concept based on Bio-oil Esterification (Radlein 2005). This concept is being studied by the group of Professor Chun-Zhu Li at Curtin University (Australia).

CONCLUSIONS

- Two types of Pyrolysis Technologies can be developed (1) Slow Pyrolysis units to produce bio-char and heat (electricity, mostly from Agricultural wastes) (2) More selective fast pyrolysis to produce bio-char and bio-oil. Bio-oil has to be further processed in a rural refinery to obtain stabilized bio-oil compatible with existing petroleum refineries and high value chemicals.
- Using bio-char as a soil amendment is one of the most promising methods for carbon sequestration. Implementing this method could provide a large market for the bio-char produced. However, in order for this to be economically viable high value bio-chars with enhanced agronomical functions must be developed.
- The development of high value products from bio-oil is critical for the survival, development and economic viability of the fast pyrolysis technologies identified.
- A balanced investment in the creation of new knowledge (science) in the design, testing and scale up of new technologies for pyrolysis reactors, bio-oil refineries, and the development of new products (from bio-oils and bio-char) which address the needs of the market are all critical for the deployment of a biomass economy based on pyrolysis technologies.

Acknowledgement

We would like to thank the funding agencies supporting my Research Program

WASHINGTON STATE UNIVERSITY AGRICULTURAL RESEARCH CENTER WASHINGTON STATE DEPARTMENT OF ECOLOGY WASHINGTON STATE DEPARTMENT OF AGRICULTURE SUN GRANT INITIATIVE, U.S. DEPARTMENT OF TRANSPORTATION, USDA U.S. NATIONAL SCIENCE FOUNDATION U.S. DEPARTMENT OF ENERGY

